
A Hybrid Correlation Model for the Spaced‐
Receiver Technique
Jun Wang1,2 and Y. Jade Morton3

1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, 2Space
Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO, USA, 3Smead Aerospace
Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, USA

Abstract A Global Navigation Satellite System (GNSS) spaced‐receiver technique estimates ionospheric
irregularity drift velocity by correlating the received GNSS signals across a closely spaced receiver array
during ionospheric scintillations. This paper focuses on the correlation models accounting for the topology
of the received diffraction pattern. Space‐time correlation schematics are developed to analyze and compare
several prevalent models, including the classic isotropy model, the front velocity model, and the anisotropy
model. Based on the merits and drawbacks of each model, a hybrid correlation model is proposed,
integrating the front velocity model and the anisotropy model. To validate the hybrid model, the
corresponding drift velocity estimates are cross compared with the measurements from a colocated all‐sky
imager and incoherent scatter radar. A case study was conducted for a geomagnetic storm event on 20
December 2015. Favorable agreement was found in terms of direction and magnitude of the drift motion,
orientation of the irregularity, temporal and spatial features of the irregularity, and the statistical behavior of
the drift velocity estimates. In addition, the root‐mean‐square velocity magnitude and orientation against
the incoherent scatter radar measurements demonstrate the superior performance of the hybrid model.

1. Introduction

A spaced‐receiver technique estimates ionospheric irregularity drift velocity through analyzing transiono-
spheric radio signals observed from a closely spaced receiver array (Briggs, 1968; Briggs et al., 1950; Mitra,
1949). Early studies focused on zonal drift estimation using signal intensity measurements in equatorial
regions (Basu & Basu, 1981). Ultra high frequency and L band devices were used to receive radio signals
transmitted from various satellite systems (Anderson & Mendillo, 1983; Basu et al., 1991; Vacchione et al.,
1987). Because of their compact, low cost, and distributive nature, GPS receivers became increasingly pop-
ular in this research area (Basu et al., 1996; Kil et al., 2000, 2002; Kintner et al., 2004). With the moderniza-
tion of Global Navigation Satellite System (GNSS), high‐rate multi‐GNSS carrier phase signals have been
utilized in high‐latitude regions (Su et al., 2017; Wang et al., 2018; Wang & Morton, 2015, 2017). The gist
of the technique is to find the time delay between receiver measurements through cross correlation when
similar diffraction pattern is observed on different receivers. Once the time delay (or time lag) is obtained,
the diffraction pattern drift velocity can be inferred from the known receiver array baseline and a correlation
model accounting for the shape of the correlation pattern caused by diffraction. Together with the satellite‐
receiver geometry and assumed effective irregularity height, the ionospheric irregularity drift velocity can be
obtained (Kil et al., 2000).

In this study, prevalent correlation models for diffraction pattern drift velocity estimation are analyzed,
including the classic isotropy model, the front velocity model, and the anisotropy model (Briggs et al.,
1950; Fedor, 1967; Wang & Morton, 2017). Based on comparison of performances of these models with
observations using a colocated all‐sky imager and incoherent scatter radar, a hybrid correlation model is
developed that combines results from the front velocity model and the anisotropy model. To validate this
hybrid model, the corresponding irregularity drift velocity estimates are further cross compared against
the all‐sky imager and incoherent scatter radar measurements.

The classic correlationmodel was developed by Briggs et al. (1950). It implicitly assumes the received diffrac-
tion patterns induced by ionospheric irregularities to be isotropic. However, due to the high parallel conduc-
tivities of the ionosphere, the irregularities are expected to be elongated along Earth's magnetic field lines,
causing highly anisotropic diffraction patterns (Mendillo & Baumgardner, 1982). Under this observation,
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a front velocity model was developed assuming rod‐like irregularity structures (Wang & Morton, 2017).
Alternatively, the anisotropy model assumes the irregularities to be ellipsoids, giving rise to diffraction pat-
terns in the form of concentric ellipses (Fedor, 1967; Singleton, 1970). To solve for the anisotropy parameters
and the drift velocity, the model uses information from receiver array autocorrelation functions in addition
to cross‐correlation functions (Armstrong & Coles, 1972; Rino & Livingston, 1982).

Space‐time correlation schematic of the received signals can be a useful tool to analyze each correlation
model. However, in the literature, it is only expressed in 2‐D for some generic spatial dimension (Briggs
et al., 1950; Kintner et al., 2004). In this study, the full space‐time correlation schematics are constructed
for the classic isotropy model, the front velocity model, and the anisotropy model. Based on the merits
and drawbacks of each method, a hybrid correlation model is proposed. It first uses the anisotropy model
to determine the drift velocity direction (and the orientation of the irregularities), and then it uses the front
velocity model (with some adjustment) to determine the drift velocity magnitude. Using the hybrid correla-
tion model, ionospheric irregularity drift velocity estimates are obtained from carrier phase measurements
collected by a multi‐GNSS receiver array at the Poker Flat Research Range, near Fairbanks, Alaska, during
scintillation (Wang et al., 2018; Wang & Morton, 2017). To validate this model, the estimated irregularity
drift velocities are cross compared against the measurements from the colocated all‐sky imager (ASI) and
the Poker Flat incoherent scatter radar (PFISR) during an intense geomagnetic storm event on 20
December 2015.

Although different correlationmodels make different assumptions on the shape of the diffraction pattern, all
correlation models discussed in this study do share some common assumptions. First, the “frozen‐in”
assumption assumes minimal evolution in irregularity structure and drift direction within the correlation
interval (Mitra, 1949). As a result, similar space‐time correlation patterns can be observed at each receiver,
allowing for an average drift velocity to be obtained. Second, the correlation functions are assumed to be
strictly decreasing functions on both sides of the correlation peaks (Armstrong &Coles, 1972). Following this
assumption, it is feasible to fully characterize the space‐time correlation for each correlation model. And
lastly, a geometric optics relationship is assumed between election density perturbation in the irregularity
structure and the carrier phase fluctuation in the received signals (Rino & Fremouw, 1977; Rino &
Livingston, 1982). This assumption establishes a unique relationship between the irregularity in space and
the observed correlation pattern on the ground.

For nongeostationary satellites, the irregularity drift velocity in the ionosphere is not the same as the drift
velocity of diffraction pattern observed on the ground, due to the effect of the satellite scan velocity (Kil
et al., 2000). A detailed procedure for calculating the satellite scan velocity can be found in Wang and
Morton (2015). An error analysis of the satellite scan velocity with respect to the irregularity height is given
in Wang et al. (2018). In this study, we first place an emphasis on the diffraction pattern drift velocity when
analyzing the correlation models. Then, the satellite scan velocity is added to the solution to obtain the irre-
gularity drift when cross comparing against measurements from other instruments.

2. Correlation Models
2.1. Classic Isotropy Model

Once the time lag information has been obtained from cross correlation, 1‐D apparent drifts along receiver
pairs can be calculated based on the baseline distance between the pair of receiver antennas. To resolve the
2‐D diffraction pattern drift velocity from these apparent drifts, a correlation model has been established
with an implicit assumption that the observed correlation functions of the diffraction pattern are statistically
isotropic (Briggs, 1968; Briggs et al., 1950; Mitra, 1949). Then it immediately follows that the diffraction pat-
terns would take the form of concentric circles. In this paper, this model is referred to as the classic isotropy
model. This model addresses a key issue on how to estimate the 1‐D drift velocity components along a pair of
receivers whose alignment is at an angle with respect to the diffraction pattern drift direction. This is illu-
strated by the following example: Let RX1 and RX2 represent the receiver pair location along the OX direc-
tion, where RX1 is at the origin O. An isotropic diffraction pattern is drifting at velocity VD at an angle θ
to the OX axis. Let the corresponding time lag at the receiver pair cross‐correlation peak be τ0. Then,
the apparent drift velocity between this pair of receivers along the OX direction is VA

x ¼ ξ0=τ0 , where
ξ0 = |RX1 − RX2|. Figure 1 illustrates the geometry associated with this example.
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Note that the concentric circles in subplot (a) are shown with different line widths, reflecting the monotonic
decrease of the correlation functions. Subplot (b) shows the velocities derived from this configuration, where

VD represents the 2‐D diffraction pattern drift andVA
x is the 1‐D apparent drift along the OX axis. As forVT

x ,
Briggs et al. (1950) define it as the true drift velocity along the receiver pair direction “with which an observer
would have to move along OX in order to reduce the speed of fading as observed by him to a minimum”.

Indeed, an observer moving along the OX axis with velocity VT
x would find the diffraction pattern fading

most slowly in time, as the observer is always at the closest point on OX with respect to the diffraction
pattern.

This is an intuitive definition under the isotropic assumption, as VT
x would coincide with the velocity com-

ponent of VD along OX. If bothVT
x andVA

x are known, the 2‐D diffraction pattern drift can be reconstructed
from these 1‐D true drift velocities along receiver pairs using the following mathematical relations:

VA
x ¼ VD= cosθ; VT

x ¼ VD cosθ (1)

However, in reality, the diffraction pattern is expected to be anisotropic
due to the high parallel conductivities of the ionosphere (Mendillo &
Baumgardner, 1982). In this case, equation set (1) may not hold, since
both the elongation and orientation of the anisotropic diffraction pattern
would impact the projections of VD onto the OX axis.

To account for the above ambiguity, it is more adequate to establish a gen-
eralized relationship between these velocities and the correlation func-
tions of receiver array measurements. Briggs et al. (1950) proposed a
space‐time correlation schematic following the assumption of monotoni-
cally decreasing correlation functions. To construct the full space‐time
correlation schematic covering all spatial dimensions, it is helpful to
understand the correlation surface along a single spatial dimension
(Briggs et al., 1950; Kintner et al., 2004). For instance, using the above
example, the space‐time correlation surface characterizing the drift velo-
city components with respect to the correlation functions can be con-
structed. Figure 2 illustrates the resulting schematic along the spatial
dimension defined by the OX axis, which is at an angle θ (0° < θ < 90°)
to the diffraction pattern drift.

In this space‐time domain, different velocities are associated with various
straight lines that go through the origin. Here the velocity is defined as dis-
placement over time (ξ/τ). Hence, the inclination angles of the lines

Figure 1. Illustration of the classic isotropy model. (a) The diffraction pattern is drifting at velocityVD at an angle θ to the
OX axis. The solid and dashed concentric circles indicate the observed correlation pattern caused by diffraction, where
maximum correlations are observed τ0 seconds apart at RX1 and RX2, respectively. (b) The velocities derived from this
configuration.

Figure 2. The space‐time schematic along the OX axis, showing the correla-
tion surface defined in Figure 1 for this spatial dimension. The concentric
ellipses depict the correlation surface with monotonic decreasing values
from the origin. The ellipse in red corresponds to correlation values equal to
the cross‐correlation peak of carrier phase measurements from the two
receivers. It crosses the time axis at t0 and the space axis at x0. The blue lines
give the drift velocity components, withVT

x associated with displacement ξ0
at time τ0, VC

x associated with x0 at τ1 and VA
x associated with ξ1 at τ1.
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determine the magnitude of the velocity, where lower inclination angles correspond to larger velocities. In
Figure 2, the vertical cut tangent to the red ellipse gives the cross correlation function, with its peak

giving the apparent drift velocity VA
x ¼ξ0=τ0ð Þ . Also, the horizontal cut finds the true drift velocity VT

x

¼ξ1=τ1ð Þ at the slowest diffraction pattern fading in time, reflected by the slowest change in the
correlation function. The relationship between these two velocities is given by the following equation
(Kintner et al., 2004):

VT
x ¼ 1

1þ t0=τ0ð Þ2 V
A
x (2)

where t0 can also be understood as the time at which the autocorrelation function takes on the peak value of
the cross‐correlation function. While τ0 is largely dependent on the inclination of the ellipses related to the
drift velocity magnitude, t0 is closely associated with the elongation of the ellipses. The ratio t0/τ0 determines
the extent to which the apparent and true velocities are equivalent.

Briggs et al. (1950) also defined the characteristic velocityVC
x as a measure of the fading rate of the diffraction

pattern

VC
x ¼ x0

τ1
¼ t0=τ0

1þ t0=τ0ð Þ2 V
A
x (3)

For some fixed τ1 value, as x0 decreases, the concentric ellipses become increasingly elongated. This leads to
a faster rate of change in the correlation function, which implies larger diffraction pattern fading rate. From

equations (2) and (3), when the ellipses are highly elongated (t0 → 0), then t0/τ0 → 0, causing VT
x→VA

x and

VC
x→0.

All velocity components in this spatial dimension share the same subscripts x, as they are defined with
respect to the OX axis configuration in the previously mentioned example. These subscripts can be altered
under different spatial dimensions or even omitted when the spatial dimension is unspecified.

Previous studies indicated that when receivers are placed along the same geomagnetic latitude in equatorial
regions, VC becomes significant only during periods of irregularity growth and is rather small during other
times (Spatz et al., 1988; Vacchione et al., 1987). On this account, Kil et al. (2000) suggested that VT may be
approximated to VA with errors of less than 10 m/s. Kintner et al. (2004) also showed support for this claim
and demonstrated that the direction of equatorial drift is zonal in most cases. To summarize, when the recei-
ver array placement and drift velocity are both zonal, that is, θ ≈ 0°, it follows that VT ≈ VA and VC ≈ 0.

The space‐time correlation surface in the above example can serve as a useful tool for analyzing different cor-
relation models. However, it can be very challenging to differentiate between two correlation models based
on their correlation surfaces along a single spatial dimension. Therefore, it is necessary to construct their full
space‐time correlation schematics by assembling correlation surfaces in all spatial dimensions. In this study,
using the classic isotropy model as an example, the space‐time correlation schematic is constructed as
the following.

First, space‐time correlation surfaces are obtained along selected spatial dimensions for different θ values.
This is performed for three diffraction pattern propagation scenarios: (a) parallel to the receiver pair orienta-
tion (θ = 0°), (b) perpendicular to the receiver pair orientation (θ= 90°), and (c) somewhere between (a) and
(b) (0° < θ < 90°). The corresponding spatial dimensions are denoted as (a) ζ∥, (b) ζ⊥, and (c) ζθ. Then, with
the first two extreme cases and the last general case, the full space‐time correlation can be derived. The
resulting individual correlation surfaces and the full space‐time correlation schematic are shown in
Figure 3.

In Figure 3, subplots (a)–(c) illustrate the correlation surfaces in red, green, and blue, under the three scenar-
ios. Similar to Figure 1, the widths of the lines correspond to different correlation strengths. Along the ζ∥, ζ⊥,
and ζθ axes, the estimated true velocities are marked by the circles, while the apparent velocities are marked
by the squares. In subplot (d), ζx‐ζy represents the horizontal receiver plane defined by the user. For example,
ζx can represent the geomagnetic east direction, while ζy can be the geomagnetic south. In the bottom figure,
the gray cylinder represents the full space‐time correlation for the classic isotropy model in the space‐time
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domain defined by the ζx‐ζy plane and the τ axis. The cross section at the top of the cylinder shows the
correlation strengths through the concentric ellipses. The dashed shapes outline the intersections from
the vertical cuts along each individual dimension for the three scenarios in red, green, and blue,
respectively. The cylinder goes through the ζx‐ζy plane at an inclination, which gives the magnitude of
VD. A horizontal cut through the cylinder at τ = 0 gives the spatial correlation pattern caused by
diffraction. In the case of the classic isotropy model, the resulting cross section takes the shape of
concentric circles. This is characterized by the top figure of subplot (d), while the black arrow along ζ∥
shows the direction of VD.

Along each spatial dimension in subplots (a)–(c), the apparent drift velocity (square) is obtained at the cross‐
correlation peak along the vertical cut of the correlation surface at the receiver distance. Then, tracing the
correlation values same as the peak value, a horizontal cut determines the true drift (circle) following the
definition by Briggs et al. (1950). In this example, the strict frozen‐in assumption is applied that the correla-
tion strength does not decrease over time within the correlation interval. Therefore, the true drift and the
apparent drift are the same in subplot (a) when the diffraction pattern happens to be traveling along the
receiver pair alignment. This agrees with the aforementioned observation from the literature. As θ increases,
the true drift decreases in magnitude while the apparent drift increases (see subplot [c]). Eventually, when θ
approaches 90°, the true drift becomes zero as the apparent drift approaches infinity (see subplot [b]).

Again, the main drawback of the classic isotropy model is that the isotropic assumption is not particularly
realistic. In fact, ionospheric irregularity structures are expected to be anisotropic and highly elongated
along magnetic field lines. This leads to rod‐like diffraction patterns instead of circular ones. Another issue
is that the definition of the true velocity can sometimes be ambiguous, as it may not equal to the projected
velocity component of the 2‐D diffraction pattern drift. Consequently, the reconstruction process via vector
addition would be erroneous, over‐estimating VD. This will be explained in the following sections.

2.2. Front Velocity Model

To better address the anisotropic nature of the ionospheric irregularities, Wang andMorton (2017) proposed
a front velocity model designed for rod‐like irregularities having larger footprints than the receiver array.

Figure 3. Individual space‐time correlations along different spatial dimensions for (a) θ = 0° in red, (b) θ = 90° in green,
and (c) 0° < θ < 90° in blue, as well as the full space‐time correlation schematic (d) for the classic isotropy model. For
subplots (a)–(c), an illustration is given on top of the correlation pattern for each θ value, while ζ∥, ζ⊥, and ζθ are the
corresponding spatial dimensions. d marks the distance between receivers RX1 and RX2; the square marks the apparent
drift velocity, and the circle marks the true drift velocity. For subplot (d), the top row gives the horizontal cut through the
ζx‐ζy plane, showing the correlation pattern from diffraction as concentric circles. In the space‐time schematic at the
bottom, the dashed shapes mark the vertical cuts along each spatial dimension as in subplots (a)–(c).
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The method also assumes that the direction of the drift velocity is perpendicular to the velocity front
(orientation of the diffraction pattern). This is a valid assumption under nominal conditions as the
irregularity is aligned with the B field, and E × B drift is expected. Under these assumptions, the space‐
time correlation schematic is constructed for the front velocity model. The results are presented in
Figure 4 following the rubrics of Figure 3.

In Figure 4, subplots (a)–(c) again give the correlation surfaces along the ζ∥, ζ⊥, and ζθ dimensions. Subplot
(d) gives the space‐time correlation as a disk, while the correlation strength is represented by the line width.
Compared to Figure 3, major differences can be found in subplots (b) and (c). They can be understood as the

extreme cases of Figures 3b and 3c as the diffraction pattern becomes
increasingly anisotropic. Like the previous example, the strict frozen‐in
assumption is applied. As a result, subplot (a) is very similar to Figure 3
a. Again, a horizontal cut through the disk along the ζx‐ζy plane gives
the shape of the diffraction pattern, which is a rod‐like pattern as in the
top figure of subplot (d). Note that when finite rod length is assumed,
disk‐like space‐time correlation pattern can be observed as in the bottom
figure of subplot (d), whereas sheet‐like correlation pattern can be
observed for infinite rod length. Both scenarios would lead to the same dif-
fraction pattern drift as long as the rod‐like diffraction pattern has a larger
footprint than the receiver array baseline.

Unlike the classic isotropy model, the estimated apparent velocities and
true velocities coincide in all spatial dimensions for the front velocity
model. As a result, the true velocity as defined in the classic isotropy
model does not reflect the velocity component of the 2‐D diffraction pat-
tern drift along ζx or ζy.

To resolve this issue, the front velocity model (and later the anisotropy
model) directly calculates the true 2‐D drift velocity vector, instead of
attempting to resolve its x and y components. Wang and Morton (2017)
provided a minimal mean square solution for an arbitrary GNSS array
with n receivers, as well as a deterministic solution for a basic array of
three receivers. The approach is to exploit the assumption that the drift
velocity is perpendicular to the velocity front. This leads to potential

Figure 4. Space‐time correlations along ζ∥ (a), ζ⊥ (b), and ζθ (c), as well as the full space‐time correlation schematic for the
front velocity model (d).

Figure 5. Illustration of the deterministic method for calculating the front
velocity. VA

12 and VA
13 (solid arrows) are the apparent drifts along the recei-

ver pairs, defining the dashed solution circles. The two circles intersect at
point P, giving the solution to the diffraction pattern drift velocity VD

f

(dashed arrow). Points O1 and O2 are the center of the solution circles in the
Cartesian coordinate system with O being the origin.
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solutions that lie on a circle corresponding to the receiver pair. With two ormore of these solution circles, the
2‐D drift can be determined at their intersection. Figure 5 illustrates the deterministic method for obtaining
the front velocity for three receivers (RX1, RX2, and RX3).

In Figure 5, VA
12 and VA

13 corresponds to the apparent drift velocities observed from receiver pairs RX1‐RX2

and RX1‐RX3, respectively. Since the front velocity is assumed to be perpendicular to the orientation of the

rod‐like irregularity, solution circles can be formed fromVA
12 andV

A
13. The intersection of the two circles gives

the deterministic solution for the diffraction pattern driftVD
f under the front velocity model. Let the origin of

this system be O(0, 0), and let the centers of the circles be O1(x1, y1) and O2(x2, y2). To solve forVD
f ¼ P x; yð Þ,

note that (1) ΔPO2O1 and ΔOO2O1 are congruent triangles (ΔPO2O1 ≅ ΔOO2O1); hence,
∠PO2O1 = ∠ OO2O1 = θ; 2) PO⊥O2O1. By applying dot‐product and trigonometry properties to these obser-
vations, a unique solution for P(x, y) can be obtained

x ¼ 2r22 sin
2θ

y1−y2
x2y1−x1y2

(4)

y ¼ 2r22 sin
2θ

x2−x1
x2y1−x1y2

(5)

For a receiver array with n ≥ 3 receivers, this system is overdetermined. There are
n

2

� �
such solutions,

which can be used to create more robust drift velocity estimates.

It should be noted that due to the inverse relationship between time lag and velocity, any error in time lag
measurements can lead to large velocity errors when the time lag value is small. To address this, the algo-
rithm adaptively rejects receiver pair cross‐correlation peaks that are associated with the smaller time lag
values. This effectively produces more reliable drift velocity magnitude estimates.

The drawback of the front velocity model is inherited from the perpendicular assumption between the velo-
city front and drift direction. This assumption is suitable for equatorial regions (Ji et al., 2011). However, it
becomes less viable under active geomagnetic conditions, especially at high latitudes, where interplanetary
magnetic field and auroral electrojet also play important roles in the direction and magnitude of the
drift velocity.

2.3. Anisotropy Model

The anisotropy model is developed to address the more realistic anisotropic nature of the diffraction pattern
induced by ionospheric scintillation (Fedor, 1967). The model consists of two parts, the forward propagation
model and the correlation model. The forward propagation model projects the ionospheric irregularities in
space to the diffraction pattern on the receiver plane (Singleton, 1970). The correlation model estimates the
anisotropy parameters and diffraction pattern drift velocity from receiver arraymeasurements (Armstrong &
Coles, 1972). It assumes that the space‐time correlation caused by the diffraction pattern takes the form of
concentric ellipsoids (Rino & Livingston, 1982). The focus of this section is on the correlation model, while
a detailed description of the forward propagation model can be found in Rino and Fremouw (1977).

Unlike the cases for the classic isotropymodel and the front velocity model, a less strict frozen‐in assumption
is applied for the anisotropy model by allowing small decrease in the correlation strength within the correla-
tion interval. This adaptation is necessary for the space‐time correlation to remain consistent with the “con-
centric ellipsoids” assumption made by the anisotropy model. The resulting space‐time correlation
schematic of the anisotropy model is shown in Figure 6.

In Figure 6, subplots (a)–(c) again illustrate the correlation surfaces for the spatial dimensions ζ∥, ζ⊥, and ζθ,
while subplot (d) gives the outline of the space‐time correlation as an ellipsoid. In addition, b′ and a′ mark
the intersections between the x and y axes with a common correlation ellipsoid in subplots (a) and (b), giving
the axial ratio (a′ : b′) of the diffraction pattern. Note that subplot (a) is different from those of Figures 3a and
4a; instead of straight lines of correlation values, highly elongated concentric ellipses are obtained. This is a
direct corollary of the concentric ellipsoids assumption. Although subplots (b) and (c) are very similar to
Figures 3b and 3c in the classic isotropy model, subplot (d) is closer to Figure 4d in the front velocity
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model. This is an expected outcome when the axial ratio of the diffraction pattern is large (a′ ≫ b′). In
equatorial studies, large axial ratio values are regularly observed (Kintner et al., 2004). Also, large
axial ratio assumptions of a′ : b′ ≥ 50 are often used in scintillation modeling (Carrano et al., 2016; Secan
et al., 1995).

Compared to the isotropy and front models, the anisotropy model is more complex and requires information
from the autocorrelation function in addition to cross‐correlation functions to solve for the anisotropy. In
essence, a space‐time correlation ellipsoid of constant correlation magnitude can be modeled by a set of ani-
sotropy parameters (a′, b′, ψ, |v|, θ), where a′ : b′ gives the axial ratio of the diffraction pattern, the angle ψ
depicts the orientation of the diffraction pattern, |v| is the magnitude of the correlation and the angle θ gives
the drift direction.

There are two general methods for solving these anisotropy parameters. The first method, developed based
on Fedor (1967), focuses on points in autocorrelation and cross‐correlation functions with the same correla-

tion value. These points can be associated with a common space‐time cor-
relation ellipsoid. Therefore, the anisotropy parameter set (a′, b′, ψ, |v|, θ)
can be solved simultaneously in one step. A recent refinement of this
approach is described in Su et al. (2017). The second method, developed
based on Armstrong and Coles (1972), focuses on intersections between
correlation functions. These intersections have the same τ values and
can be associated with the same horizontal cut of the space‐time correla-
tion ellipsoid. Effectively, this method takes a two‐step approach. It first
solves for the diffraction pattern parameters (a′, b′, ψ) based on the corre-
lation intersections with additional information at the cross‐correlation
peaks. It then uses the solution to find the drift velocity parameters (|v|, θ).
Figure 7 gives an example showing the different data points used in the
one‐step approach against the two‐step approach.

In Figure 7, the two green dots represent points on R11 and R12 at the same
correlation value used in the one‐step approach. The two red dots repre-
sent the intersection between R11 and R12 and the cross‐correlation peak
used in the two‐step approach. Comparable performances have been
observed between these two methods (Costa et al., 1988; Khudukon

Figure 6. Space‐time correlations along ζ∥ (a), ζ⊥ (b), and ζθ (c), as well as the full space‐time correlation schematic for the
anisotropy model (d). a′ and b′ are scaled semimajor and semiminor axes of the diffraction pattern.

Figure 7. Illustration of data points used in the one‐step approach (green)
and the two‐step approach (red) for solving the anisotropy. R11 and R12
represent the autocorrelation and cross‐correlation functions obtained from
the receiver pair (RX1 and RX2) measurements.
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et al., 1994). This study follows the two‐step approach, refined based on
the work of Rino and Livingston (1982). Details of the method are docu-
mented in the appendix.

As the estimated axial ratio approaches unity (a′ : b′ ≈ 1), the diffraction
pattern becomes nearly isotropic rather than anisotropic. This means that
the diffraction patterns would be very similar when observed from differ-
ent angles, making it very challenging to determine the orientation of the
anisotropy. As a result, small axial ratios carry small confidence levels into
the estimated anisotropy parameters. In practice, results associated with
small axial ratios (a′ : b′ < 2) are excluded.

Another practical weakness of the anisotropy model is that it tends to
overestimate the magnitude of the 2‐D drift. An example is given later
to demonstrate this problem using real data. Unlike the front velocity
model, the anisotropy model cannot simply reject receiver estimates that

are associated with small time lag values, since dropping correlation functions would quickly lead to an
underdetermined system.

2.4. Hybrid Correlation Model

Based on the merits and drawbacks of each correlation method from the analysis above, a hybrid correla-
tion method is proposed. First, the drift velocity direction and the diffraction pattern orientation are
obtained using the anisotropy model. Then, taking these parameters as a priori, an adjusted front velocity
model is created. It calculates the projection of the apparent velocity onto the drift direction along the dif-
fraction pattern orientation as the velocity front. Following the adaptive filtering scheme of the front velo-
city model, measurements associated with smaller time lag values are then rejected. The remaining
measurements are averaged to produce the final estimate of the 2‐D diffraction pattern drift.

For example, in the Cartesian plane representing the velocity values, let the apparent 1‐D diffraction pattern

drift be VA
1−D ¼ x1−D; y1−Dð Þ along some arbitrary receiver pair. Say the anisotropy model finds the diffrac-

tion pattern drift velocity to be VD
a ¼ xa; yað Þ and the velocity front orientation to be F = (xf, yf). Then, the

hybrid diffraction pattern drift velocity is VD
h ¼ xh; yhð Þ determined as a nonorthogonal projection of

VA
1−D onto VD

a following the orientation of F. Figure 8 illustrates the projection geometry.

Based on Figure 8, the hybrid velocity can be determined as

x ¼ y1−D−kf x1−D
ka−kf

; y ¼ kax (6)

where ka = ya/xa and kf = yf/xf represent the gradients of the anisotropy drift and the velocity front, respec-
tively. In the case where anisotropy parameters are not measurable, the final 2‐D drift estimate takes the
front velocity model solution if available.

3. Results and Analysis

A case study is conducted based on an intense geomagnetic storm event that occurred on 19 December
2015 and lasted until 21 December 2015. The particular data set used in this study is from 20
December 2015, when the geomagnetic disturbances were most intense. The global Kp index stayed above
4 throughout the day and reached 7+ at its peak, while the Dst index reached maximum intensity at
−155 nT (World Data Center for Geomagnetism, Kyoto, http://wdc.kugi.kyoto‐u.ac.jp/wdc/Sec3.html).
The Auroral Electroject (AE) index also showed large disturbances and reached 1,883 nT at its maximum
intensity (OMNIWeb service, http://omniweb.gsfc.nasa.gov/index.html). Moreover, the local magnet-
ometer at Poker Flat, Alaska, observed large disturbances with approximately ±1,000 nT in the horizontal
component and ±500 nT in the vertical measurements (UAF Alaska Satellite Facility, https://www.asf.
alaska.edu/magnetometer). More details of this event are described in Wang and Morton (2017) and
Wang et al. (2018).

Figure 8. Illustration of the projection geometry for hybrid velocity estima-
tion. VD

h is the hybrid diffraction pattern drift projected from the 1‐D
apparent drift VA

1−D onto the direction of the anisotropy drift VD
a guided by

the velocity front F. The dashed black ellipse is the solved anisotropy, while
the red lines represent the velocity front orientation F.

10.1029/2018RS006662Radio Science

WANG AND MORTON 289

http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
http://omniweb.gsfc.nasa.gov/index.html
https://www.asf.alaska.edu/magnetometer
https://www.asf.alaska.edu/magnetometer


Ionospheric irregularity drift velocities are estimated based on the diffraction pattern drift from the proposed
hybrid correlation model, together with the satellite scan velocity estimates. Velocities from the front velo-
city model and the anisotropy model are also calculated for comparison. These velocity estimates are cross
compared against measurements from the on‐site ASI and the PFISR adopting the comparison scheme used
in previous studies (Wang et al., 2018; Wang & Morton, 2017). An elevation angle mask of 35° is applied to
minimize the multipath effects. Figure 9 shows the comparison results using the geodetic coordinate system
for four consecutive epochs from 04:39:35 UT with a 25‐s interval.

In Figure 9, the PFISR beam center is approximated from the four PFISR beams used in this experiment: (14°
az, 90° el), (−154.3° az, 77.5° el), (−34.7° az, 66.1° el), and (75° az, 65.6° el; Marigal Database, http://isr.sri.
com/madrigal/). The PFISR velocity is averaged from measurements within (66°N, 66.75°N) geomagnetic
latitudes, where most consistent results are observed. The PFISR velocity stays the same for all four subplots,
as this 100‐s period is within a 5‐min PFISR data interval. A horizontal arc structure can be observed in the
ASI images showing auroral emission. With closer examinations, the arc structure can be seen moving

Figure 9. Cross comparison between drift velocity estimates from different correlation methods versus Poker Flat inco-
herent scatter radar (PFISR) vector velocity measurements on top of 557.7‐nm ASI images from 04:30:25 to 04:31:40 UT
on 20 December 2015. In each subplot, the red square and quiver represent the approximated PFISR beam center and the
averaged PFISR vector velocity measurement, respectively. Global Navigation Satellite System satellites are plotted as dots
with respect their elevation and azimuth angles using three‐letter initials for abbreviation (G = GPS, R = GLONASS,
E = Galileo). The color of each dot corresponds to the phase scintillation strength observed for each satellite, shown by the
color bar. Drift velocity estimates for GPS PRN 7 from different correlation methods are given by the colored quivers
(pink = anisotropy model, cyan = front velocity model, and yellow = hybrid model). The estimated topologies of these
models are provided using dashed lines in the same colors. Geodetic reference velocity vectors at 1,500 m/s are given in
white in the first subplot.
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westward during the 100‐second observation period. This agrees with
PFISR's vector velocity measurements. Meanwhile, good spatial associa-
tions can be observed between phase scintillations experienced on GNSS
satellites and auroral emissions seen on ASI. Phase scintillation strengths
that are above nominal values (σψ> 4°) are only observed on satellites clo-
sest to the irregularity: GPS 7, GLONASS 4, and GLONASS 13. Moderate
scintillation is observed on GPS 7, producing measureable space‐time cor-
relations for drift velocity estimation.

For the front velocity model, the magnitude of the drift velocity estimates
matches well against PFISR's measurement. But the orientation of the
velocity front and the direction of the drift do not match with the local
B field topology, whose declination angle was around 18.5°N (Thébault
et al., 2015). For the anisotropy model, as shown by the dashed ellipses,
the anisotropy orientation matches the B field orientation. Also, the direc-
tions of the estimated drift velocities agree with the PFISR results.
However, the magnitudes of the velocity estimates are much larger than
the PFISR measurements in the first three subplots. Combining the
advantages of the front velocity model and the anisotropy model, the
hybrid correlation model shows improved agreement with PFISR mea-
surements, in both velocity magnitude and drift direction estimation.

Following the projection scheme from the geodetic coordinate system into
geomagnetic, irregularity drift velocities are projected onto PFISR's field
of view into different geomagnetic latitude bins (Wang et al., 2018).

Figure 10 shows the cross‐comparison results between GNSS drift velocity estimates from the hybrid model
versus vector velocity measurements obtained by PFISR. While Figure 9 gives snapshots of individual scin-
tillation events, Figure 10 depicts the temporal and spatial patterns of the irregularities over the entire day of
20 December 2015.

In Figure 10, the PFISR measurements are most consistent from 66°N to 66.75°N. Three common features
can be identified across these geomagnetic latitudes. First, at around 0400 UT, large north‐westward velocity
components can be observed and quickly transitioned into small south‐westward components. Second, from
~1500 to ~2100 UT, south‐eastward drifts persisted with relatively large variations. Finally, from ~2100 to
2400 UT, small northward components emerged. These features can also be observed in GNSS‐estimated
results. Additionally, the GNSS results showed some large fluctuations post 1200 UT toward lower magnetic
latitudes. In fact, the timing of these fluctuations corresponds well with a substorm that occurred from ~1200
to ~1400 UT (Wang & Morton, 2017). This substorm was localized toward the southern half of the sky out-
side of PFISR's limited observation volume, supported by ASI summary plots (Wang et al., 2018).

As can be observed from Figure 10, the GNSS array and PFISR have distinct spatial coverages and limited
overlaps in their fields of view (detailed coverages of both systems can be found in Wang & Morton,
2017). Therefore, it is more suitable to analyze the overall statistical behaviors of the two systems. To that
end, a quantitative comparison is carried out by investigating the mean values and standard deviations of
PFISR's measurements and the combined velocity estimates from the GNSS receiver array. For the GNSS
estimates, the results are binned into 5‐min intervals to match with the PFISR's measurements from the ori-
ginal 25‐s resolution. The results are shown in Figure 11.

Figure 11 once more indicates that the results from the GNSS array and PFISR are in good agreement.
Comparing the mean values, in the east‐west direction, the GNSS estimates are reasonably close to the
PFISR measurements and are almost always within PFIRS's error bar boundaries. In the north‐south direc-
tion, the agreement is slightly inferior. This is likely due to the shorter baseline separations in the north‐
south direction, as well as the possible error that occurred during coordinate transformation from geodetic
to geomagnetic without knowledge of the vertical velocity component. The error bars of the GNSS array are
also larger in the north‐south direction, showing greater velocity variations. The dominant contribution to
the GNSS velocity variations is likely to come from the spatial and temporal variations of the
irregularity structures.

Figure 10. Cross comparison between the GNSS estimated irregularity drift
velocities (blue) from the hybrid model against PFISR vector velocity mea-
surements (red) on 20 December 2015. Reference vectors at 1,500 m/s
pointing eastward and northward are given at the bottom left of the figure.
PFISR = Poker Flat incoherent scatter radar.
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The last cross comparison is on the distribution of the velocity magnitudes. Note that this comparison only
focuses on the results from 1000 to 2400 UT, as both the GNSS array and the PFISR have near‐continuous
data. Figure 12 shows the results.

In Figure 12, a general agreement can be seen between the two distributions. The PFISR distribution has a
more distinct peak between velocities ranging from 400 to 800 m/s, while the GNSS distribution shows more
proportion toward velocities above 1,300 m/s.

The above quantitative analyses are focused on the results estimated by the hybrid method. Similar studies
are reproduced using both the front velocity model and the anisotropymodel. To summarize the comparison
results, the root‐mean‐square (RMS) values of the difference in mean velocity magnitude and orientation
between GNSS array and PFISR are provided in the following table for the front velocity, anisotropy, and
hybrid models.

Figure 11. Cross comparison of mean drift velocities between the PFISR (red dots) and the GNSS array (blue dots) on 20
December 2015, together with their standard deviations as error bars. PFISR = Poker Flat incoherent scatter radar.

Figure 12. Cross comparison of the velocity magnitude distributions of the PFISR measurements (red squares) and the
GNSS estimates (blue circles) between 1000 and 2400 UT on 20 December 2015. PFISR = Poker Flat incoherent scatter
radar.
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As can be seen in Table 1, the front velocity model has RMS velocity values comparable to the hybrid model.
However, it has the largest RMS angles. On the contrary, the anisotropy model produces the smallest RMS
angle values but tends to overestimate the velocity values. In this example, the hybrid method demonstrates
the best overall performance among the three correlation models.

4. Conclusion

In the context of spaced‐receiver studies for irregularity drift velocity estimation, this study focuses on the
correlation analysis of the received diffraction pattern. Three correlation models are analyzed in detail
through their space‐time correlation schematics, including the classic isotropy model, the front velocity
model, and the anisotropy model. Based on the merits and drawbacks of each method, a hybrid correlation
model is proposed combining the anisotropy model and the front velocity model. Drift direction and diffrac-
tion pattern orientation are first obtained from the anisotropymodel. Drift magnitude is then determined via
the adjusted front velocity model taking the diffraction pattern orientation as the velocity front. As shown in
a real‐data example, the hybrid correlation model exhibits superior performance over the prevalent models.

Through a case study of a geomagnetic storm event on 20 December 2015, the GNSS‐estimated drift veloci-
ties using the hybrid correlation model are cross compared with measurements from both the ASI and the
PFISR. The comparison results are favorable in several aspects, including direction and magnitude of the
drift motion, orientation of the irregularity, detailed temporal and spatial features, averaged behaviors over
time, as well as the statistical distribution of the drift velocity magnitude. Similar analyses are conducted for
the front velocity and anisotropy models. The RMS values of GNSS versus PFISR suggest that the hybrid
model has the best overall performance. In the future, more case studies from both high‐latitude and equa-
torial regions will be analyzed to further validate this hybrid correlation method.

Appendix A: Anisotropy Parameters Estimation

Following Rino and Livingston (1982), the diffraction pattern caused by the propagated anisotropic irregu-
larity structure is characterized by the quadratic function

f 2 Δρsð Þ ¼ CΔρ2sx−BΔρsxΔρsy þ AΔρ2sx
AC−B2=4

(A1)

where Δρsx and Δρsy are the receiver displacement along the x axis and y axis. A, B, and C are the anisotropy
parameters to represent the shape of the ellipse. It is more convenient to rewrite equation (A1) in matrix
form

f 2 Δρsð Þ ¼ Δρs
TEΔρs (A2)

where E is a 2 × 2 matrix

E ¼ 1
AC−B2=4

C −B=2

−B=2 A

� �
(A3)

For a system of n spaced receivers, the total number of correlation functions is n2. Denote each correlation
function as Rij(Δt), where i and j represent specific receiver pairs with i, j = 1, 2, … , n. This includes both

Table 1
RMS Values of GNSS Versus PFISR for all Three Correlation Models on 20 December 2015

Correlation models RMS V‐east (m/s) RMS V‐north (m/s) RMS magnitude (m/s) RMS angle (rad)

Front velocity 697.0 700.3 509.2 1.113
Anisotropy 1153.6 878.8 987.3 0.902
Hybrid 662.3 710.6 492.7 0.947

Note. RMS = root‐mean‐square; PFISR = Poker Flat incoherent scatter radar.
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autocorrelation functions (i = j) and cross‐correlation functions (i ≠ j). Based on the model described in the
previous section, these correlation functions will take the general form

Rij Δtð Þ ¼ Rij f Δρij−V
DΔt

� �
;Δt

h i
(A4)

In the next step, these correlation functions are paired with each other to reveal more information about the
anisotropy. For the convenience of problem formulation, the n2 correlation functions are indexed consecu-
tively from 1 to n2 based on cardinality. For example, the autocorrelation function R11 is now labeled as R1,
and the cross‐correlation function R13 is now labeled as R3. Then equation (A4) can be rewritten as the fol-
lowing form using a single superscript notation

Ri Δtð Þ ¼ R f Δρ ið Þ−VDΔt
� �

;Δt
h i

(A5)

where i takes the values from 1 to n2.

Following the method of Armstrong and Coles (1972), the intercept time delay τjk between any pair of cor-
relation functions is identified by

R f Δρ jð Þ−VDτjk
� �

; τjk
h i

¼ R f Δρ kð Þ−VDτjk
� �

; τjk
h i

(A6)

By using the same matrix notation used in the previous section, it follows that equation (A5) holds only if

Δρ jð Þ−VDτjk
� �T

E Δρ jð Þ−VDτjk
� �

¼ Δρ kð Þ−VDτjk
� �T

E Δρ kð Þ−VDτjk
� �

(A7)

or

VDT
E Δρ jð Þ−Δρ kð Þ
� �

¼ 1
2τjk

Δρ jð ÞTEΔρ jð Þ−Δρ kð ÞTEΔρ kð Þ
h i

(A8)

IfE;the anisotropy term is known, then the above equation constitutes an overdetermined system while VD

can be solved using the least squares method (Armstrong & Coles, 1972; Rino & Livingston, 1982).

In order to determine the anisotropy parameters, another set of equations are introduced by considering the
time lag τi produced when the correlation between a receiver pair is at maximum, including autocorrelation
with the receiver itself, which leads to τi= 0. Note that for a cross correlation, τi is exactly the time lag used to
determine the apparent velocity in the previous sections. By direct computation under the frozen‐in assump-
tion, Rino and Livingston (1982) showed that τi must satisfy the relation

VDT
EΔρ ið Þ ¼ τiV 2

eff (A9)

where

V eff ¼ f VD
� 	 ¼ CVD

x 2−BV
D
x V

D
y þ AVD

y 2

AC−B2=4

 !1=2

(A‐10)

By substituting equation (A9) into equation (A8), there is

Δρ jð ÞT E=V 2
eff


 �
Δρ jð Þ−Δρ kð ÞT E=V 2

eff


 �
Δρ kð Þ ¼ 2τjk τj−τk

� 	
(A11)

This system of equation is in general overdetermined, hence can be used to solve for E=V 2
eff


 �
using least

squares. Moreover, knowing E=V 2
eff


 �
is sufficient to determine VD in the system of equations described

by equation (A9), as we can simply divide both sides by an arbitrary V 2
eff to turn E into E=V 2

eff


 �
.

To better formulate the system of equations into a least squares problem, equation (A11) is rewritten in a
more compact form by defining the NI × 3 matrix
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D ¼
D 1ð Þ
xx D 1ð Þ

xy D 1ð Þ
yy

⋮ ⋮ ⋮
D NIð Þ
xx D NIð Þ

xy D NIð Þ
yy

264
375 (A12)

with the elements

D ið Þ
xx ¼ Δρ jð Þ

x 2−Δρ kð Þ
x 2 (A13)

D ið Þ
xy ¼ Δρ kð Þ

x Δρ jð Þ
y −Δρ jð Þ

x Δρ kð Þ
y (A14)

D ið Þ
yy ¼ Δρ jð Þ

y 2−Δρ kð Þ
y 2 (A15)

where i takes on allNI= (n4 + 3n2− 2n)/4 admissible pairs of intersection points, while j and k correspond to
the indexed receiver pairs. We also define the NI × 1 vector

T ¼ 2τ 1ð Þ
jk τ 1ð Þ

j −τ 1ð Þ
k

� �
;…; 2τ NIð Þ

jk τ NIð Þ
j −τ NIð Þ

k

� �h iT
(A16)

and the 3 × 1 vector

X ¼ C=E;B=E;A=E½ �T (A17)

where

E ¼ V 2
eff AC−B2=4
� 	

(A18)

Now, the system of equations described by euation (A11) can be written in matrix form as

DX ¼ T (A‐19)

which has the least squares solution

bX ¼ DTD

 �−1

DTT (A20)

Note that knowing bX≈ C=E;B=E;A=E½ �T is equivalent as knowing E=V 2
eff


 �
, since

E

V 2
eff

¼ 1
V 2

eff AC−B2=4ð Þ
C −B=2

−B=2 A

� �
¼ C=E −B=2E

−B=2E A=E

� �
(A21)

Based on equation (A9), the following relationship can be established

VDT
E=V 2

eff


 �
Δρ jð Þ−Δρ kð Þ
� �

¼ τj−τk (A22)

As discussed before, we now can solve this system of equations using the solved E=V 2
eff


 �
. Similarly, we first

define the NI × 2 matrix

I ¼
I 1ð Þ
x I 1ð Þ

y

⋮ ⋮
I NIð Þ
x I NIð Þ

y

264
375 (A23)

where

I ið Þ
x ¼ C

E
Δρ jð Þ

x −Δρ kð Þ
x

� �
−

B
2E

Δρ jð Þ
y −Δρ kð Þ

y

� �
(A24)

I ið Þ
y ¼ −

B
2E

Δρ jð Þ
x −Δρ kð Þ

x

� �
þ A

E
Δρ jð Þ

y −Δρ kð Þ
y

� �
(A25)

and the NI × 1 vector χ with elements
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χ ið Þ ¼ τ ið Þ
j −τ ið Þ

k (A26)

together with the 2 × 1 vector VD ¼ VD
x ;V

D
y

h iT
to be solved for.

Equation (A22) can now be written in matrix form as

IVD ¼ χ (A27)

which has the least squares solution

dVD ¼ ITI

 �−1

ITχ (A28)

Equations (A20) and (A28) give the scaled anisotropy by V 2
eff and the diffraction pattern velocity derived

from a set of receiver temporal correlation functions.
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